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Abstract. We derive recurrence relations for the calculation of multiloop sunset-type diagrams with large
powers of massive propagators. The technique is formulated in configuration space and exploits the explicit
form of the massive propagator raised to a given power. We write down and evaluate a convenient set of
basis integrals. The method is well suited for a numerical evaluation of this class of diagrams. We give
explicit analytical formulae for the basis integrals in the asymptotic regime.

1 Introduction

With the present accuracy of phenomenological applica-
tions, high precision tests of the Standard Model and
search for new physics invariably require accounting for
higher order contributions in coupling constants within
perturbation theory. This necessitates the computation of
multiloop diagrams [1]. Numerous high precision tests of
the Standard Model require the evaluation of diagrams in
the approximation when external momenta are small in
comparison with the masses of particles corresponding to
internal lines of the diagrams (see e.g. [2–4]). In this way
massive diagrams without external momenta – vacuum
bubbles – appear.

The dominant technique for high-order perturbation
theory calculations of multiloop diagrams nowadays con-
sists in using recurrence relations obtained from the
method of integration by part within dimensional regular-
ization [5]. The final answer of a calculation is expressed
in terms of a few master integrals that serve as initial val-
ues for the recurrence equations. These master integrals
are explicitly evaluated (analytically or numerically) while
the reduction of a given diagram to the master integrals
involves only algebraic manipulations (as an example see
[6] which presents the idea in its full bright glory).

Presently the evaluation of massive vacuum bubbles di-
agrams at the three-loop level is basically completed. The
general strategy of reducing all massive three-loop bub-
bles to a basic set of master integrals through recurrence
relations was described in [7]. Recently the remaining un-
known master integrals have been analytically identified
by using high precision numerical computation assuming a
given basis of transcendental numbers for master diagrams
[8]. The existing techniques for the three-loop evaluation
of massive vacuum bubbles make use of the reduction of

six-dimensional objects (in the parameter space of powers
of the propagators) through recurrence relations obtained
within the integration by part technique. In direct appli-
cations of these techniques some topology classes of dia-
grams (sunset-type topology with large powers of prop-
agators) appear to be one of the main sources of heavy
computer time consumption [9]. Nevertheless, in principle,
the problem of analytical calculation of three-loop bubbles
is solved.

However, in practice the solution to the recurrence re-
lations is not a routine procedure and requires the manip-
ulation of a huge number of terms. Even using symbolic
manipulation programs this task is in some cases beyond
present computer capabilities. For instance, the computa-
tion of higher moments of the b-quark spectral function
[10,11], which is important for a precision determination
of the b-quark mass [12], is limited by these obstacles and
only moments up to n = 8 are presently available within
perturbation theory [13]. In view of the importance of this
problem new ideas and techniques to improve on present
results are called for.

Some attention has recently been drawn to the prob-
lem of optimizing the recurrence procedure for three-loop
bubbles to find shorter routes to the final solution (see e.g.
[14] and therein). It has been proven that the final result
for three-loop bubbles contains only several transcenden-
tal numbers (which are known) with rational coefficients
for arbitrary mass configuration [8]. This structure of the
final answer prompts one to search for more direct ways
of obtaining the physical results. Indeed, for phenomeno-
logical applications one only needs numerical values of the
coefficients of perturbation theory and their analytical ex-
pressions are not really important [2,3]. The advantage of
analytical computation is, of course, the full control over
precision. If numerical methods are used, one has to take
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extra care about possible error accumulation. This is not
always straightforward in this type of calculation because
huge numerical cancellations may occur among the large
number of contributing terms.

We discuss a technique that allows one to reduce these
diagrams to a one-parameter set of basis integrals of a
rather simple structure. The method is formulated in con-
figuration space and exploits the explicit form of massive
propagators with large powers of denominators. A conve-
nient set of basis integrals is written down. The general-
ization to any number of loops is straightforward which
is a part of the motivation for the present investigation.
The method is well suited for a numerical evaluation of
this class of diagrams.

In the course of comparing our analytical results with
those given in [6] we have derived a number of interesting
new analytical results on definite integrals involving prod-
ucts of McDonald functions with powers and logarithms.

The paper is organized as follows. To begin with, in
Sect. 2 we remind the reader of some features of the config-
uration space approach and introduce our notation which
closely follows the notation in [15]. In Sect. 3 we present
several explicit examples taken from the subclass of sunset-
type diagrams, the water melon diagrams, in order to com-
pare the results obtained within the configuration space
approach with results given in the literature [6]. In Sect. 4
we explain our general recursion concept and present a
convenient set of basis integrals. In Sect. 5 we present
different methods to calculate these basis integrals. Our
conclusions are given in Sect. 6.

2 Basic relations

We consider three-loop vacuum bubbles with only one
mass m which serves as a dimensional parameter. The
classification of the topology prototypes for three-loop vac-
uum bubbles was presented in [7]. The analytical compu-
tation of some missing master integrals has recently been
completed [8]. However, the solution of the recurrence re-
lations leading to the master integrals is complicated and
time consuming, especially for large powers of propaga-
tors. We suggest new recurrence relations for a particular
topology of vacuum bubbles which allows for an explicit
solution. The simplicity of our technique is manifest in the
configuration space representation for Feynman diagrams.
First we remind the reader of some features of the config-
uration space approach and introduce our notation which
closely follows the notation in [15].

A general three-loop vacuum diagram has the topology
of a tetrahedron. It also can be thought of as
“fish+propagator” topology (see Fig. 1) where the “fish”
part is a master two-loop diagram. This topology suggests
the use of the following representation in configuration
space (with an obvious choice of space-time points)

Π(x) = fish(x)D(x, m) (1)

where D(x, m) is a propagator of a massive particle with
mass m in D-dimensional (Euclidean) space-time,

0 x

(a) (b)

Fig. 1a,b. Three-loop vacuum bubble diagram in two differ-
ent representations: a the tetrahedron representation, b the
“fish+propagator” representation where the configuration
space points 0 and x are indicated

D(x, m) =
1

(2π)D

∫
e−ipµxµ

dDp

p2 + m2 =
(mx)λKλ(mx)

(2π)λ+1x2λ
,

D(x, 0) =
Γ (λ)

4πλ+1x2λ
. (2)

We write D = 2λ + 2, λ = 1 − ε; Kλ(z) is the McDon-
ald function (a modified Bessel function of the third kind,
see e.g. [16,17]). The propagator D(x, m) depends only
on the length of the space-time vector |x| =

√
xµxµ for

which we simply write x. The explicit representation for
the modified internal line with mass m (power of the mas-
sive propagator) is given by

D(µ)(x, m)

=
1

(2π)D

∫
e−ipνxν

dDp

(p2 + m2)µ+1

=
1

(2π)λ+12µΓ (µ + 1)

(m

x

)λ−µ

Kλ−µ(mx). (3)

It contains the same functions (up to the difference in
indices) as (2) and thus does not change the general func-
tional structure of the representation constructed below.
This is the reason why our method is well suited for deal-
ing with large powers of propagators of massive particles.

The quantity of interest – a vacuum bubble – is repre-
sented by the integral

Π̃(0) =
∫

Π(x)dDx (4)

which is nothing but the Fourier transform of Π(x) at zero
momentum. It depends on a single dimensional parameter
m, the mass of the particles in the massive lines.

The “fish” part of the diagram is written in terms of
a dispersion relation in configuration space,

fish(x) =
∫

ρf (s)D(x,
√

s)ds (5)

which leads to a representation of the form

Π̃(0) =
∫

Π(x)dDx

=
∫

ds ρf (s)
∫

D(x,
√

s)D(x, m)dDx. (6)

This form can be further simplified by performing the in-
tegration in x explicitly. The result reads∫

D(x,
√

s)D(x, m)dDx
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Fig. 2a,b. The “spectacle+propagator” representation, also
called “spectacle” topology diagram in two different forms,
namely a the form used in (69) and b the form used in (81)

=
(

m
√

s

2

)λ 1
(2π)λ+1Γ (λ + 1)

∫ ∞

0
xKλ(x

√
s)Kλ(mx)dx

=
(

m
√

s

2

)λ
π

(2π)λ+1Γ (λ + 1)
Γ

(
1
2

+ λ

)

×Γ

(
1
2

− λ

)
2F1

(
1
2

+ λ,
1
2
; 1; 1 − m2

s

)
.

Here 2F1(a, b; c; z) is a hypergeometric function. There-
fore the problem of evaluating the diagram is reduced
to a one-dimensional integral if the spectral density for
the “fish” part ρf (s) is known. The spectral density ρf (s)
was computed for the principal massive configurations in
four-dimensional space-time [18]. If the propagator that
multiplies the “fish” part of the diagram is massless, this
formula can be further simplified and is given by∫

D(x,
√

s)D(x, 0)dDx

=
sλ/2

2λ(2π)λ+1

∫ ∞

0
x1−λKλ(x

√
s)dx

=
(s

2

)λ/2 Γ (1 − λ)
4λ(2π)λ+1 .

The final integration over s in (6) now includes only some
power of the energy square s (instead of the hypergeomet-
ric function as in the massive case) and is rather straight-
forward. The equivalent set of formulae can also be ob-
tained in the momentum space representation [8].

In some cases one propagator can be removed from
a diagram using the recurrence relations for bubbles ob-
tained within the integration by part technique [7]. Then
the diagram becomes simpler. The initial “fish+propaga-
tor” topology converts to a “spectacles+propagator”
topology. The spectral density for the spectacle part can
be computed in a rather simple way. It is given by a prod-
uct of two one-loop integrals in the momentum space rep-
resentation (see Fig. 2). In the original classification of [7]
these are class E diagrams. We will henceforth adopt the
classification of [7] to denote the different topology classes
of diagrams.

After a deliberate use of the recurrence relations for
bubbles, in some cases two propagators can be removed.
A typical situation of such a kind was analyzed in [6].
In such a case the diagrams become simple indeed. Even
the most complicated ones belong to the subclass of wa-
ter melon topologies which can be computed immediately
(see Fig. 3). Their properties (with generalization to any
number of loops) have been described in detail in [15]. The

(a) (b)

Fig. 3. a Three-loop (i.e. four-line) water melon and b two-
loop water melon (three-line water melon, being the ordinary
sunset diagram)

most attractive feature of such a strategy is that for high
derivatives of propagators (large powers of denominators)
the corresponding recurrence relations for this particular
topology can be solved very efficiently.

3 Water melon topology: explicit examples

While the water melon class of diagrams can appear as
part of the remnants of the general recursive procedure,
there are some cases when they are just the final aim of
the recursion procedure. This is the case for the BN sub-
class of diagrams [6]. Some of the master integrals (for
instance, D3(0, 1, 0, 1, 1, 1) in [7]) are exactly water mel-
ons. A further simplification of water melon diagrams can
be achieved with the use of their particular properties.
In the configuration space representation the water melon
diagrams can be reduced to a specific basis set of simple
integrals quite efficiently.

The configuration space technique for the water melon
topology is particularly convenient for a numerical evalu-
ation since it is simple and efficient. We have reproduced
numerically some results of [6,8] with our technique.

In the particular case of the subclass BN of the bub-
ble diagrams, the water melon topology diagrams emerge
naturally and can be chosen as master configurations. The
reduction of a general diagram of this subclass to the wa-
ter melon topology is explicitly constructed in [6]. Here
we discuss a representation which can be obtained within
the configuration space technique. The representation is
simple and is given by a one-dimensional integral. The ex-
pansion in ε within dimensional regularization is straight-
forward and is explicitly given for the evaluation of the
numerical value of the integral B4 [6] for which we give a
new representation.

The starting point of our calculation is the definition
of the BN class of diagrams [6],

BN (0, 0, n3, n4, n5, n6)

=
∫

dDk dDl dDp

m3D(πD/2Γ (1 + ε))3
m2n3

((p + k)2 + m2)n3
(7)

× m2n4

((p + l)2 + m2)n4

m2n5

((p + k + l)2 + m2)n5

m2n6

(p2 + m2)n6

with two propagators absent (n1 = n2 = 0) to obtain a
water melon topology for the three-loop case. In the fol-
lowing we will suppress these first two indices in the no-
tation for the BN class diagrams. The configuration space
expression for the generalized propagator (with crosses or
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having differentiated in its mass or momentum) is given
by (3). This can be inserted into the above expression for
BN and after rearrangement of integrations leads to

BN (n3, n4, n5, n6)

=
m2(n3+n4+n5+n6)−3D

(πD/2Γ (1 + ε))3
(2π)3D

∫
D(n3−1)(x, m)

×D(n4−1)(x, m)D(n5−1)(x, m)D(n6−1)(x, m)dDx (8)

which can be reduced to a one-dimensional integral us-
ing the rotational invariance of the integration measure in
Euclidean space-time,

dDx =
2πλ+1

Γ (λ + 1)
x2λ+1dx. (9)

Note that various techniques of eliminating tensorial struc-
tures for vacuum diagrams were discussed in [15,19]. On
the other hand we have [15]

Π̃(0) =
2πλ+1

Γ (λ + 1)

∫ ∞

0
D(n3−1)(x, m)D(n4−1)(x, m)

×D(n5−1)(x, m)D(n6−1)(x, m)x2λ+1dx. (10)

The comparison of these two formulas results in

BN (n3, n4, n5, n6)

=
(2π)3Dm2(n3+n4+n5+n6)−3D

(πD/2Γ (1 + ε))3
Π̃(0) (11)

where the powers of the propagators in Π̃(0) have been
appropriately adjusted. In the following calculations we
set m = 1 for the mass (regardless of the units, of course).
We will discuss some explicit applications of (10) and (11)
in the following to indicate their properties.

As a first example we consider the integral BN (2, 2, 2,
2) in the case λ = 1 (four-dimensional space-time). Gen-
erally we have the explicit expressions

D(1)(x, 1) =
x1−λ

(2π)λ+121Γ (2)
Kλ−1(x)

=
xε

2(2π)2−ε
K−ε(x) (12)

for the propagators which results in

D(1)(x, 1) =
1

2(2π)2
K0(x) (13)

for ε = 0. We obtain

BN (2, 2, 2, 2) =
(2π)12

π6

2π2

16(2π)8

∫ ∞

0
K4

0 (x)x3dx

= 2
∫ ∞

0
K4

0 (x)x3dx (14)

which is the expression obtained earlier in [15]. Note that
the function K0(x) is a propagator of a massive particle in

two-dimensional space-time. Therefore many results can
be obtained by using two-dimensional field theory in Eu-
clidean space-time (see e.g. [20]).

For the more general case of D-dimensional space-time
we obtain

Π̃(0) =
2π2−ε

16(2π)8−4εΓ (2 − ε)

∫ ∞

0
x4εK4

−ε(x)x3−2εdx

and

BN (2, 2, 2, 2) =
21−2ε

(1 − ε)Γ (1 + ε)3Γ (1 − ε)

×
∫ ∞

0
K4

−ε(x)x3+2εdx. (15)

To find higher orders in the ε-expansion necessary for com-
putations within dimensional regularization we use series
expansions in ε of all quantities entering (15). First we
have the rather obvious results

21−2ε

(1 − ε)Γ (1 + ε)3Γ (1 − ε)
= 2(1 + ε − 2ε ln 2 + 2εγE) + O(ε2),

x3+2ε = x3(1 + 2ε lnx) + O(ε2), (16)

where γE is Euler’s constant. Within the dimensional reg-
ularization scheme the propagator in the configuration
space contains the McDonald function with a non-integer
index depending on the regularization parameter ε. To ex-
pand the McDonald function in the parameter ε entering
its index, we use the general formula [17][

∂Kν(z)
∂ν

]
ν=±n

= ±1
2
n!

n−1∑
k=0

(z

2

)k−n Kk(z)
k!(n − k)

,

n ∈ {0, 1, . . . } (17)

for the derivative of the McDonald function with respect
to its index near integer values of this index. In this case
one obtains

K−ε(x) = K0(x) + O(ε2). (18)

We end up with

BN (2, 2, 2, 2)

= 2
∫ ∞

0
K4

0 (x)x3dx + 4ε

∫ ∞

0
K4

0 (x)x3 lnx dx

+2ε(1 − 2 ln 2 + 2γE)
∫ ∞

0
K4

0 (x)x3dx + O(ε2)

= 2I0(3) + 2ε(1 − 2 ln 2 + 2γE)I0(3)

+4εI l
0(3) + O(ε2) (19)

where a general notation for the configuration space inte-
grals

Im(q) =
∫ ∞

0
K4−m

0 (x)Km
1 (x)xqdx,

I l
m(q) =

∫ ∞

0
K4−m

0 (x)Km
1 (x)xq lnx dx (20)
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is introduced. The only new contribution in the ε-expan-
sion till the first order in (19) is connected with the loga-
rithmic integral I l

0(3)(I l
m(q) from (20)). The part related

to I0(3) in this order is a trivial kinematic contribution.
The term 2(ln 2−γE) in (19) can be easily removed by re-
defining the logarithmic integral using lnx → ln(xeγE /2).

Identifying the parameters B3 and B4 from [6] we find

BN (2, 2, 2, 2)

= −3
8

+
7
16

B3 +
(

63
32

B3 +
3
16

B4

)
ε + O(ε2) (21)

= −3
8

+
7
16

ζ(3) +
(

63
32

ζ(3) − 63
32

ζ(4) +
3
16

B4

)
ε + O(ε2)

where B3 = ζ(3)− 9
2εζ(4)+O(ε2). The comparison of the

zeroth order term of (21) with (19) results in the relation

I0(3) = − 3
16

+
7
32

ζ(3) (22)

which assigns a value to one of the initial terms of the
recurrence relations that will be presented later in Sect. 4.
We checked this relation numerically. In the first order
part of the ε-expansion we solve for B4 obtaining the rep-
resentation

B4 =
16
3

(
2(1 − 2 ln 2 + 2γE)I0(3) + 4I l

0(3)

+
63
32

(ζ(4) − ζ(3))
)

=
32
3

(
(1 − 2 ln 2 + 2γE)I0(3) + 2I l

0(3)
)

+
21
2

(
ζ(4) − ζ(3)

)
(23)

which after substituting for I l
0(3) from (20) gives numer-

ically B4 = −1.7628 . . . This numerical value expressed
in terms of configuration space integrals within our tech-
nique coincides with the result given in [6]. Taking the
analytical expression for B4 from [6]

B4 = 16Li4

(
1
2

)
+

2
3

ln4(2) − 2
3
π2 ln2(2) − 13

180
π4 (24)

with Li4(z) being a fourth order polylogarithm,

Li4(z) =
∞∑

k=1

zk

k4 , |z| < 1,

we obtain the result for the logarithmic integral Ĩ l
0(3),

Ĩ l
0(3) =

∫ ∞

0
K4

0 (x) ln(xeγE /2)x3 dx

=
3
32

+
3
4
Li4

(
1
2

)
− 17

1920
π4 − 1

32
π2 ln2(2)

+
1
32

ln4(2) +
49
128

ζ(3) (25)

which serves as the initial value for the recurrence rela-
tions for the set of logarithmic integrals (Sect. 4). We have

checked this value numerically. For a further demonstra-
tion of the efficiency of the configuration space technique
for fixed powers of the propagators we calculate the two
integrals BN (2, 2, 2, 1) and BN (2, 3, 3, 4) (the latter does
not contain B4 which is the reason for having selected this
example).

For the integral BN (2, 2, 2, 1) in four-dimensional
space-time (λ = 1) we have to include the propagator

D(0)(x, 1) =
x−λ

(2π)λ+120Γ (1)
Kλ(x)

=
xε−1

(2π)2−ε
K1−ε(x) (26)

equal to K1(x)/4π2x for λ = 1 which is a standard prop-
agator of a massive particle for D = 4. We obtain a rep-
resentation of the form

BN (2, 2, 2, 1) = 4
∫

K3
0 (x)K1(x)x2dx = 4I1(2). (27)

For the integral BN (2, 2, 2, 1) in the case λ = 1 − ε we
obtain the generalization of (27) of the form

BN (2, 2, 2, 1) =
22−2ε

(1 − ε)Γ (1 + ε)3Γ (1 − ε)

×
∫ ∞

0
K3

−ε(x)K1−ε(x)x2+2εdx. (28)

The ε-expansion of the factor multiplying the integral is
the same as in the former case except for an overall factor
of 2. A similar statement is valid for the expansion of the
power of x. What remains to be done is to expand the
McDonald functions in the vicinity of integer values of
their indices. To obtain this expansion we use the relation

∂Kν(x)
∂ν

∣∣∣
ν=1

=
1
2

(x

2

)−1
K0(x) =

1
x

K0(x) (29)

which contributes to the power expansion as

K1−ε(x) = K1(x) − ε

x
K0(x) + O(ε2). (30)

Using these expansions we obtain the representation in
terms of our basic integrals

BN (2, 2, 2, 1)

= 4
∫ ∞

0
x2K3

0 (x)K1(x)dx − 4ε

∫ ∞

0
xK4

0 (x)dx

+4ε(1 − 2 ln 2 + 2γE)
∫ ∞

0
x2K3

0 (x)K1(x)dx

+8ε

∫ ∞

0
x2 lnx K3

0 (x)K1(x)dx + O(ε2)

= 4I1(2) + 4ε(1 − 2 ln 2 + 2γE)I1(2)

−4εI0(1) + 8εI l
1(2) + O(ε2)

that has to be compared with the output of the RECUR-
SOR package [6] with the explicit master integrals B3, B4,

BN (2, 2, 2, 1) =
7
4
B3 +

3
4
B4ε + O(ε2) (31)

=
7
4
ζ(3) +

(
3
4
B4 − 63

8
ζ(4)

)
ε + O(ε2).
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The zeroth order comparison gives the result I1(2) = 7
16

ζ(3) which has been verified numerically. The first order
comparison results in

B4 =
4
3

(
4(1 − 2 ln 2 + 2γE)I1(2) − 4I0(1)

+8I l
1(2) +

63
8

ζ(4)
)

=
16
3
(
(1 − 2 ln 2 + 2γE)I1(2) − I0(1) + 2I l

1(2)
)

+
21
2

ζ(4) = −1.7628 (32)

as before (see (23)). For the integral BN (2, 3, 3, 4) in the
case λ = 1 − ε we need to include further propagators.
They are

D(2)(x, 1) =
x2−λ

(2π)λ+122Γ (3)
Kλ−2(x)

=
x1+ε

8(2π)2−ε
K−1−ε(x),

D(3)(x, 1) =
x3−λ

(2π)λ+123Γ (4)
Kλ−3(x)

=
x2+ε

48(2π)2−ε
K−2−ε(x).

Both McDonald functions have to be expanded in their
index. We have K−1(x) = K1(x) and

∂Kν(x)
∂ν

∣∣∣
ν=−1

= −1
2

(x

2

)−1
K0(x) = − 1

x
K0(x),

thus
K−1−ε(x) = K1(x) +

ε

x
K0(x) + O(ε2),

and

∂Kν(x)
∂ν

∣∣∣
ν=−2

= −1
2
2!
(

1
2!

(x

2

)−2
K0(x) +

1
1!1!

(x

2

)−1
K1(x)

)

= − 2
x2 K0(x) − 2

x
K1(x),

so that

K−2−ε = K2(x) +
2ε

x
K1(x) +

2ε

x2 K0(x) + O(ε2). (33)

With these relations we obtain the following ε-expansion
for the integral in question

BN (2, 3, 3, 4)

=
2−2ε

192(1 − ε)Γ (1 + ε)3Γ (1 − ε)

×
∫ ∞

0
K−ε(x)K2

−1−ε(x)K−2−ε(x)x7+2εdx

=
1

192
I21(7) +

ε

192
(1 − 2 ln 2 + 2γE)I21(7) +

ε

96
I11(6)

+
ε

96
I3(6) +

ε

96
I2(5) +

ε

96
I l
21(7) + O(ε2) (34)

where we have introduced the generalized integral

Imn(q) =
∫ ∞

0
K4−m−n

0 (x)Km
1 (x)Kn

2 (x)xqdx. (35)

This expansion has to be compared with the representa-
tion through master integrals found in momentum space,

BN (2, 3, 3, 4) =
1

576
+
(

385
65536

B3 − 809
884736

)
ε

+O(ε2) (36)

resulting in the identification

I21(7) =
∫ ∞

0
K0(x)K2

1 (x)K2(x)x7dx =
1
3

(37)

which is surprisingly simple and contains no transcenden-
tal numbers usually present in such integrals. It is rather
curious that a similar identification allows one to express
ζ(3) in terms of our basis integrals

ζ(3) =
1024
1155

(
(1 − 2 ln 2 + 2γE)I21(7) + 2I11(6)

+2I3(6) + 2I2(5) + 2I l
21(7) +

809
4608

)
. (38)

We checked both equations numerically to make certain
that they are valid. These results serve as a hint that the
standard basis may not be the simplest and most relevant
basis to be used in computations of massive three-loop
diagrams.

We have considered some explicit expressions follow-
ing from the configuration space representation of water
melon diagrams. In all these examples the integrals are ul-
traviolet finite. We emphasize that ultraviolet divergences
add nothing new to the analysis. For this particular topol-
ogy the structure of the ultraviolet divergences is partic-
ularly simple: all divergences result from the region of in-
tegration around small x and there are no overlapping di-
vergences. Therefore the divergent parts of the diagrams
can be obtained by expanding the integrand at small x
and subtracting the corresponding singularities which sim-
plifies the integrands drastically (making them effectively
massless) and the integration of the divergent parts can be
done analytically [15] within some (usually dimensional)
regularization scheme. More complicated is to find the fi-
nite parts of the massive diagrams. Keeping this in mind
we do not discuss the problem of ultraviolet divergences in
the rest of the paper and concentrate on the finite parts.

4 Reduction

The preceding section has shown that three-loop water
melon diagrams can be expressed as configuration space
integrals of a product of at most four McDonald functions
Kν(x) where ν need not be an integer. In this section we
want to exhibit the three steps of how to reduce the set
of necessary integrals to a smaller set. First we can get
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rid of the non-integer dimensionality of the functions by
using (17) to expand into powers of ε resulting in integrals
containing a product of four McDonald functions with or
without a factor ln(x). As a second step we use the relation

Kn(x) = 2
n − 1

x
Kn−1(x) + Kn−2(x) (39)

for McDonald functions of different orders to further re-
duce the integrals to integrals only containing K4

0 , K3
0K1,

K2
0K2

1 , K0K
3
1 and K4

1 together with some positive powers
of x and again with or without a factor ln(x). The last
step consists in using

d

dx
Kν(x) = −1

2
(Kν−1(x) + Kν+1(x)) (40)

for integer ν (which is valid for any complex ν as well)
and a partial integration in order to reduce the necessary
integrals to integrals containing only the McDonald func-
tion K0(x). This reduction procedure will be considered
for two different cases in the following two subsections.

4.1 Reduction to integrals containing K4
0(x)

After using the recurrence relations for Bessel functions
the general water melon diagram reduces to a linear com-
bination of basic integrals given in (20). The subsequent
reduction to even simpler integrals containing only K4

0 (x)
and powers of x is done by partial integration. For this
purpose we make use of the relations

d

dx
K0(x) = −K1(x) and

d

dx
K1(x) = −1

2
(K0(x) + K2(x))

= −K0(x) − 1
x

K1(x). (41)

After some simple algebra for the most tedious case of four
functions K1(x) in the integrand we obtain the recursion
relation∫ ∞

0
K4

1 (x)xqdx

= −
∫ ∞

0

d

dx
(K0(x))K1(x)3xqdx

= −
[
K0(x)K3

1 (x)xq
]∞
0

− 3
∫ ∞

0
K2

0 (x)K2
1 (x)xqdx

+(q − 3)
∫ ∞

0
K0(x)K3

1 (x)xq−1dx.

The other cases are simpler and will not be written down
here. For q > m, the surface terms of the form [K(4−m)

0 (x)
Km

1 (x)xq]∞0 vanish. Therefore the only elements of this
recursion are the integrals Im(q), and the recursion is ex-
pressed as

I4(q) = (q − 3)I3(q − 1) − 3I2(q),

I3(q) =
1
2
((q − 2)I2(q − 1) − 2I1(q)),

I2(q) =
1
3
((q − 1)I1(q − 1) − I0(q)),

I1(q) =
1
4
qI0(q − 1), (42)

which reduces the starting integrals to our basis integrals

I0(q) =
∫ ∞

0
K4

0 (x)xqdx. (43)

4.2 Reduction to integrals containing K4
0(x) ln x

We again use the relations (41) to reduce the general water
melon integrals to those containing only the McDonald
function K0(x). This is done again by partial integration.
As in the previous subsection we find

∫ ∞

0
K4

1 (x)xq lnx dx

= −
∫ ∞

0
K3

1 (x)
dK0(x)

dx
xq lnx dx

= −
[
K0(x)K3

1 (x)xq lnx
]∞
0

− 3
∫ ∞

0
K2

0 (x)K2
1 (x)xq

× lnx dx + (q − 3)
∫ ∞

0
K0(x)K3

1 (x)xq−1 lnx dx

+
∫ ∞

0
K0(x)K3

1 (x)xq−1dx

for the case with four functions K1(x) in the integrand. For
integer q > m, the surface terms [K4−m

0 (x)Km
1 (x)xq lnx]∞0

again vanish. Therefore the recursion is expressed in terms
of the integrals I l

m(q) and is given by

I l
4(q) = (q − 3)I l

3(q − 1) + I3(q − 1) − 3I l
2(q),

I l
3(q) =

1
2
((q − 2)I l

2(q − 1) + I2(q − 1) − 2I l
1(q)),

I l
2(q) =

1
3
((q − 1)I l

1(q − 1) + I1(q − 1) − I l
0(q)),

I l
1(q) =

1
4
(qI l

0(q − 1) + I0(q − 1)). (44)

Together with (42) these relations give the complete set of
one-parameter recurrence equations for reducing a general
water melon integral to a set of master integrals of the
form I0(q) from (43) and

I l
0(q) =

∫ ∞

0
K4

0 (x)xq lnx dx. (45)

Concluding these two subsections we affirm that (43) and
(45) constitute our basis for the evaluation of water melon
diagrams with high powers of denominators.
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4.3 Efficiency of reduction

Note that the direct reduction of a water melon diagram
to the master integrals is rather slow within the straight-
forward application of recurrence relations based on mo-
mentum space representation. In practice the computa-
tion proceeds through the use of a table of integrals with
given powers of the denominators. One would have a three-
dimensional table for a given total power N if no modi-
fications of the basic technique as developed in [6] have
been introduced. The number of entries (even when ac-
counting for the appropriate symmetries) then grows as
fast as N3 which is large for the large values of N needed
in some present applications. Within our methods one first
re-expresses these integrals through a one-parameter set of
integrals which are solved explicitly. For large N the num-
ber of entries increases as a first power of N (the number
of elements for the I0(q) basis is given by 2[N/2]−5 where
[z] is an integer part of z) which considerably reduces the
time consumption in a computer evaluation. Note that in
[21,22] different recursion techniques have been described
which also avoid the use of the three-dimensional tables
in reducing the water-melon diagram. For instance, in the
package MATAD [21] the three-loop water melon diagrams
are reduced to a one-dimensional table of integrals using a
dedicated set of (momentum-based) recurrence relations.

5 Computation

In this section we give some explicit formulae for comput-
ing water melon diagrams within the configuration space
technique. The methods is best used for direct numerical
computation or for constructing efficient approximation
formulae for water melon diagrams. Therefore, as for ex-
act analytical expressions, we mainly consider the D = 4
case where the initial values of the recurrence procedure
can be easily found and can be compared with numerical
results. The construction of the ε-expansion is not drasti-
cally simplified as compared to the standard momentum
space approach and we therefore do not dwell on it here.

5.1 N = 4 water melon

We describe a simple way of computing an initial value of
a general D = 4 (or, more precisely, integer dimension)
water melon diagram. The quantity we need has the form

I(q) =
∫ ∞

0
K4

0 (x)x2q+1dx ≡ I0(2q + 1) (46)

and represents a member of our basis.
We concentrate first on the case q = 0. Note that (46)

is simply the result for a water melon diagram with a mas-
sive propagator K0(mx) within a two-dimensional theory
[20]. The corresponding two-line water melon (master one-
loop diagram) in momentum space has the explicit form

Π̃2(p) =
1

2π
√

p2
√

p2 + 4m2
ln

(√
p2 + 4m2 +

√
p2√

p2 + 4m2 −
√

p2

)
.

(47)

(46) now becomes

I(0) = 2πm2
∫

Π̃2(p)2d2p =
1
4

∫ ∞

0

ξ2dξ

sinh ξ
=

7
8
ζ(3) (48)

where we have changed the integration variable p to a
new variable ξ defined by the relation p = 2m sinh(ξ/2)
and used the standard integral [23]∫ ∞

0

ξα−1dξ

sinh ξ
=

2α − 1
2α−1 Γ (α)ζ(α) (49)

with Γ (α) being Euler’s Γ -function and ζ(α) being Rie-
mann’s ζ-function. Note that the two-dimensional one-
loop correlator in momentum space Π̃2 shown in (47) has
the simple form

Π̃2(2m sinh(ξ/2)) =
1

4πm2

ξ

sinh ξ

when expressed in terms of the new variable ξ. The inte-
gration measure becomes d2p = 4πm2 sinh ξ dξ.

Results for other values of q can be obtained by differ-
entiating one of the two Π̃2 in the integrand in (48),

I(q) = 2πm2
∫

Π̃2(p)(−m22p)qΠ̃2(p)d2p (50)

where 2p is a two-dimensional d’Alembert operator in
(Euclidean) momentum space, 2p = ∂2/∂pµ∂pµ. There is
a possibility to differentiate a separate line of this three-
loop water melon diagram that leads to different repre-
sentations for higher moments but we find (50) to be the
most convenient one. We do not have a general analytical
solution to (50) for arbitrary large q at the moment, al-
though the solutions for some first values of q are easily
available.

Also we comment on the general structure of the basis
given by I(q) in (46). This basis has the form

Aqζ(3) − Bq (51)

where the transcendental number ζ(3) is manifestly writ-
ten down while Aq, Bq are rational positive numbers for
any q. Several pairs of coefficients (Aq, Bq) for q = 1, 2, 3, 4,
5 are (

7
32

,
3
16

)
,

(
49
128

,
27
64

)
,

(
63
32

,
37
16

)
,(

42777
2048

,
25555
1024

)
,

(
3101175

8192
,
9304913
20480

)
.

The quantity I(q) is positive for any q. Its numerical mag-
nitude can be easily inferred from the asymptotic expan-
sion of the integral given in (46) at large q,

I(q) =
π2Γ (2q)
42q+1

(
1 − 1

q − 1/2
+ O(1/q2)

)
. (52)

However, its analytical representation given in (51) reveals
a rather awkward behaviour when analyzed numerically.
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Two terms with manifestly different transcendental struc-
ture taken as analytical expressions cancel each other to
a large extent upon numerical evaluation. Indeed, using
the numerical value of the transcendental number ζ(3) =
1.20206 . . . , the numerical values of the pairs (Aqζ(3), Bq)
for q = 1, 2, 3, 4, 5 are given by

(0.26295, 0.1875), (0.460162, 0.421875),
(2.36655, 2.3125), (25.1076, 24.9561), (455.052, 454.341).

For q = 5 the numerical values of quantities of different
transcendentality coincide with each other up to three sig-
nificant figures resulting in a cancellation on subtraction
and a large loss of precision. For larger q the cancella-
tion of the first significant figures of the two numbers is
more dramatic resulting in even larger losses of numerical
precision. It casts some doubt on whether the presenta-
tion of results in terms of their manifest transcendental
structure is the most preferable one. On the other hand
the asymptotic formula (52) is simple and quite precise.
Namely, taking (52) and introducing a new parameter κ
which accounts for higher order terms in the asymptotic
expansion, one has

I(q) =
π2Γ (2q)
42q+1

(
1 − 1

q + κ

)
. (53)

For κ = 0.97 this simple formula gives good numerical
results for the basis integrals with an accuracy better than
1% for all q ≥ 1. For q > 3 the relative accuracy is better
than 10−3 (one per mille).

Another representation for the basis set of integrals can
be obtained using the dispersion relation in configuration
space. One obtains the relation

K4
0 (x) = (2π)3

∫ ∞

16
ρ4(s)K0(

√
sx)ds (54)

with ρ4(s) being a spectral density for the three-loop wa-
ter melon diagram. Note that such a representation is a
basis for the sum rule calculations in configuration space
both in two-dimensional [20] and four-dimensional space-
time [24]. One obtains the following relation for the basis
integrals in terms of the moments of the spectral density
ρ4(s),

I(q) = (2π)34q(q!)2
∫ ∞

16

ρ4(s)
sq+1 ds. (55)

An efficient way of computing the spectral density of wa-
ter melon diagrams has recently been developed [25]. How-
ever, the direct configuration space representation is the
most convenient for a numerical evaluation. To emphasize
this last remark, we give an asymptotic formula for the ε-
expansion of a water melon diagram where ln(x) appears
in the integrand. The asymptotic formula for the log-type
integrals reads (where we changed our notation by intro-
ducing ln(4x) for convenience)

Ll
4(q) =

∫ ∞

0
K4

0 (x)x2q+1 ln(4x)dx

=
π2Γ (2q)
42q+1 Ψ(2q)

(
1 − 1

q − 1/2
+ O(1/q2)

)
(56)

where Ψ(x) = Γ ′(x)/Γ (x) is the logarithmic derivative of
the Γ -function.

Modifying the last term by introducing a parameter κl

as before in (53) we find that the relation

Ll
4(q) =

π2Γ (2q)
42q+1 Ψ(2q)

(
1 − 1

q + κl

)
(57)

with κl = 1.17 gives good results for the basis log-type
integrals with an accuracy better than 1% for all q > 3.
For q > 5 the relative accuracy is better than 10−3. The
leading order asymptotic formula presented in (57) is less
precise for small q than its analog in (53) in the previ-
ous case because the integrand in (56) is not positive for
log-type integrals. It is also clear that an exact solution
of the recurrence relations will be much more complicated
than these simple asymptotic formulae. For large q the nu-
merical cancellation of terms with different transcendental
structure up to very high significant figures will be quite
dramatic.

The solution of the recurrence relations depends on the
space-time dimensionality. In the case D = 3 the structure
of the recurrence relations drastically simplifies. The ba-
sis set of integrals in three-dimensional space-time can be
written down explicitly. The propagator is

D(x, m) =
1

4πx
e−mx (58)

which leads to an integral basis of the form

H0(q) = (2π)4(λ+1)
∫ ∞

0
D(x, m)4xq+2dx

→ π2

4

∫ ∞

0
e−4xxq−2dx =

π2

4q
Γ (q − 1). (59)

The special case D = 3 can serve as a check of any general
solution of the recurrence relations.

5.2 N = 3 water melon: a standard sunset

The case of a two-loop water melon (genuine sunset) is
simple indeed and can be easily analyzed along the same
lines. The corresponding basis set of configuration space
integrals is quite analogous to the previous case and is sim-
pler because it now includes only three McDonald func-
tions,

Jn(q) =
∫ ∞

0
K3−n

0 (x)Kn
1 (x)xqdx,

J l
n(q) =

∫ ∞

0
K3−n

0 (x)Kn
1 (x)xq lnx dx. (60)

The reduction to the basis set of integrals analogous to
the case of three-loop water melons given in (43) and (44)
can be now readily obtained.

The basic initial integral (the basic sunset BS) for the
recurrence relation has the explicit form

BS =
∫

Π̃2(p)
p2 + M2 d2p (61)
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with Π̃2(p) given by (47). Here M is a mass of the third
line which is kept different from the other two with masses
m. By differentiating with respect to M , any positive
power of propagator (and/or power of x in configuration
space representation) can be obtained. After changing the
integration variable as in the preceding subsection one
finds an explicit representation

BS =
∫ ∞

0

ξdξ

4m2 sinh2(ξ/2) + M2
. (62)

After a change of variables the integration can be done
and can be reduced to a polylogarithm function. Namely,
for t = e−ξ one has

BS =
∫ ∞

0

ξ dξ

4m2 sinh2(ξ/2) + M2

= − 1
m2

∫ 1

0

ln t dt

1 − 2γt + t2
(63)

where γ = 1 − M2/2m2. The last integral is evaluated to
give

∫ 1

0

ln t dt

1 − 2γt + t2
=

Li2(1/t1) − Li2(1/t2)
t1 − t2

(64)

where t1,2 = γ ±
√

γ2 − 1 and Li2(z) is the dilogarithm
function,

Li2(z) =
∞∑

k=1

zk

k2 , |z| < 1.

The differentiation with respect to M is now straightfor-
ward and can be performed with a symbolic manipulation
program.

In the case M = 2m the integration simplifies because
the two independent parameters M and 2m on which the
integrand depends, coincide (degenerate case). The inte-
gral is then reduced to a special case of (49). We have
γ = −1 and ∫ 1

0

ln t dt

(1 + t)2
= − ln 2 (65)

which leads to

BS(M = 2m) =
ln 2
m2 . (66)

For the case M = m the standard result – Clausen’s poly-
logarithm Cl2(π/3) – is reproduced (see e.g. [8]). Indeed,
γ = 1/2 and t1,2 = exp(±iπ/3). Equation (64) now be-
comes ∫ 1

0

ln t dt

1 − t + t2
= − 2√

3
Im Li2(eiπ/3) (67)

and with using the definition of Clausen’s polylogarithm,
Cl2(θ) = Im Li2(eiθ) one finds

BS(M = m) =
2

m2
√

3
Cl2

(π

3

)
. (68)

5.3 Generalization to the spectacle topology

In this subsection we give a formula for a more general
topology when only one propagator is removed from the
initial three-loop bubble diagram. In the original classifi-
cation of [7] these are class E diagrams belonging to the
spectacle topology. The formula obtained in this subsec-
tion is efficient for numerical integration though we did
not find any analytical solution. The main obstacle of gen-
eralizing the configuration space technique to a general
multi-loop diagram is the angular integration. The config-
uration space technique proved to be rather successful for
general diagrams in the massless case [26] but it brings
no essential simplification in the general massive case (see
e.g. [27]). However, for special configurations the angular
integration can be explicitly performed with a reasonably
simple integrand left for the radial integration. The di-
agrams of spectacle topology give an example of such a
configuration.

The configuration space expression of a spectacle topol-
ogy diagram written in a form suitable for our purpose is
(see Fig. 2a)∫

D(x − y, m)D(x, m)2dDxD(y, m)2dDy. (69)

The key relation for a drastic simplification of the con-
figuration space integral with the spectacle topology is
the addition theorem for Bessel functions allowing one to
perform some angular integration explicitly. One needs to
integrate over the relative angle in the propagator D(x −
y, m). In the handbook of Gradshteyn and Rhyshik [17]
one finds

Zν(mR)
Rν

= 2νm−νΓ (ν)
∞∑

k=0

(ν + k)
Jν+k(mρ)

ρν

×Zν+k(mr)
rν

Cν
k (cos ϕ) (70)

where Cν
k are the Gegenbauer polynomials, Z is any of the

Bessel functions J , Y , H(1) or H(2),

R =
√

r2 + ρ2 − 2rρ cos ϕ (71)

and r > ρ. For r < ρ the arguments of the Bessel functions
on the right hand side of (70) should be interchanged.
Writing R = |r − ρ| we have for r > ρ

Zν(m|r − ρ|)
|r − ρ|ν = 2νm−νΓ (ν)

∞∑
k=0

(ν + k)
Jν+k(mρ)

ρν

×Zν+k(mr)
rν

Cν
k (cos ϕ). (72)

Using this relation for Z = H(1) and substituting m =
eiπ/2 for the purpose of analytic continuation in order to
obtain a relation for the modified Bessel functions K and
I, we find

Kλ(|r − ρ|)
|r − ρ|λ = 2λΓ (λ)

∞∑
k=0

(λ + k)
Iλ+k(ρ)

ρλ

×Kλ+k(r)
rλ

Cλ
k (cos ϕ) (73)
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where we have

Kλ(z) =
iπ

2
eπλi/2H

(1)
λ (iz),

Iλ(z) = e−πλi/2Jλ(eπi/2z) for − π < arg z ≤ π

2
,

Iλ(z) = e3πλi/2Jλ(e−3πi/2z) for
π

2
< arg z ≤ π. (74)

Using the orthogonality relations for Gegenbauer poly-
nomials (see the Appendix), the sum disappears after in-
tegration over the relative angle and only one term con-
tributes. We obtain∫

Kλ(|r − ρ|)
|r − ρ|λ dΩρ

= 2λΓ (λ)
∞∑

k=0

(λ + k)
Iλ+k(ρ)

ρλ

Kλ+k(r)
rλ

∫
Cλ

k (cos ϕ)dΩϕ

= 2λΓ (λ)λ
Iλ(ρ)
ρλ

Kλ(r)
rλ

2πλ+1

Γ (λ + 1)
Cλ

0 (1)

= (2π)λ+1 Iλ(ρ)
ρλ

Kλ(r)
rλ

, r > ρ, (75)

where the first equality is a consequence of the orthogonal-
ity relation with the trivial factor Cλ

0 (1) = 1. This result
allows one to write down an expression for any spectacle-
type diagram in the form of a two-fold integral with a
simple integration measure∫ ∞

0
D(x, m)2x2λ+1dx

∫ ∞

0
D(y, m)2y2λ+1dy (76)

×
(

Kλ(x)
xλ

Iλ(y)
yλ

θ(x − y) +
Kλ(y)

yλ

Iλ(x)
xλ

θ(y − x)
)

where θ(x) is the standard step-function distribution.
Note that the integration measure D(x, m)2x2λ+1dx

allows one to perform the integration by using efficient
integration routines for a numerical evaluation. The form
of the weight function is close to e−axxα which makes the
use of Laguerre polynomials a convenient choice within
the Gaussian numerical integration method. Any modified
propagator (with any power of the denominator) can be
used as a factor in the integration measure D(x, m)2x2λ+1

dx which makes this representation universal and useful
for the case of high powers of denominators of the lines
associated with pairs (x, 0) and (y, 0) of space-time points.
If the angular structure of the diagram is preserved, the
generalization to higher loops in the expressions for the
radial measures is straightforward.

As an illustration of this technique we present an ex-
ample of the evaluation of a spectacle diagram. Consider
an integer dimension space-time which, without loss of
generality, can be chosen to be two-dimensional (an odd
number of dimensions is trivial because the propagators
degenerate to simple exponentials). The spectacle-type
three-loop diagram can be obtained in a closed form. In-
deed, in the momentum space representation we have

S(M) =
∫

Π̃2(p)
2

p2 + M2 d2p (77)

for the basic spectacle diagram S with Π̃2(p) taken from
(47) and the mass M of the connecting propagator kept
different. After the substitutions p = 2m sinh(ξ/2) and
t = e−ξ we have

S(M) =
1

2πm4

∫ 1

0

t ln2 t dt

(1 − t2)(1 − 2γt + t2)
. (78)

Performing the integration we finally obtain

S(M) =
f(t1) − f(t2)

t1 − t2
(79)

with

f(t) =
8tLi3(1/t) − (t + 7)ζ(3)

8πm4(t2 − 1)

where t1,2 = γ±
√

γ2 − 1 with γ = 1−M2/2m2 as before.
Li3(z) is the trilogarithm function

Li3(z) =
∞∑

k=1

zk

k3 , |z| < 1.

For M = 2m the integral in (78) simplifies as in the case of
the sunset diagram and one finds a simple answer in terms
of the standard (in the present context) transcendental
numbers ln 2 and ζ(3),

S(2m) =
1

4πm4

(
7
8
ζ(3) − ln 2

)
.

For the actual value of the mass M = m we obtain a result
including the next Clausen polylogarithm Cl3(2π/3). As
one can conclude from this expression, the conjugate pair
of the sixth order roots of unity, exp(±2πi/3) plays an
important role in this case again in accordance with the
general analysis of [8]. The origin of the appearance of the
the sixth order roots of unity as the parameters of the an-
alytical expressions of the diagrams lies in the mismatch
of masses along the lines of the diagrams. However, the
exceptional case M = 2m, where one line has the double
mass of the other lines (which results in the drastic sim-
plification) also keeps us within the set of the sixth order
roots of unity. The key parameter in this case is simply
the natural number 1 which definitely is one of the sixth
order roots of unity.

Turning to the configuration space representation we
find

S(M) =
∫ ∞

0
xK0(mx)2dx

∫ ∞

0
yK0(my)2dy

×
(

K0(Mx)I0(My)θ(x − y)

+K0(My)I0(Mx)θ(y − x)

)
(80)

for the basic spectacle diagram. An explicit numerical in-
tegration of (80) shows coincidence with the analytical
result in (79) which we checked for arbitrary values of M .
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In this example the analytical result has a rather simple
form which is not true if high powers of denominators en-
ter. Then the corresponding one-loop insertions are rather
cumbersome and an explicit integration in configuration
space is more convenient.

As a last topic of this subsection we demonstrate how
the square of Clausen’s polylogarithm Cl2(π/3)2 can
emerge at the level of spectacle topology diagrams. The
transcendental number Cl2(π/3)2 characterizes the ana-
lytical results for three-loop bubbles. Its presence was dis-
covered in the impressive treatise of David Broadhurst on
the role of the sixth order roots of unity for the tran-
scendentality structure of results for Feynman diagrams
in quantum field theory [8].

We consider the spectacle diagram in the form shown
in Fig. 2b. Here the expression for the generalized middle
line is a product of the one-loop propagator of (47) and
the standard particle propagator. We express the one-loop
propagator in (47) using a dispersion representation with
the spectral density ρ2(s) and obtain

Loop(p, m) × Propagator(p, m)

= Π̃2(p)
1

p2 + m2 =
1

p2 + m2

∫ ∞

4m2

ρ2(s)ds

s + p2

=
∫ ∞

4m2

ρ2(s)ds

s − m2

(
1

p2 + m2 − 1
s + p2

)
. (81)

Taking only the first term (which is sufficient for obtaining
the result we are looking for) one has

I =
1

p2 + m2

∫ ∞

4m2

ρ2(s)ds

s − m2 (82)

which leads to the sunset diagram after the two other line
shown in Fig. 2b have been added with a normalization
factor given by the integral. One factor Cl2(π/3) results
from integrating the overall sunset diagram which is com-
posed of the propagator (p2 + m2)−1 from (82) with the
two other lines of the diagram shown in Fig. 2b. The sec-
ond factor Cl2(π/3) has to be found in the normalization
factor given by the integral in (82). Note that the very
structure of this contribution – the square of a number
which first appeared at the lower loop level – suggests a
hint for its search. It should emerge as an iteration of a
lower order contribution in accordance with the iterative
structure of the R-operation (see e.g. [28]) which forms a
general framework for the analysis of multiloop diagrams.
The following consideration confirms this guess. Consider
the quantity

N =
∫ ∞

4m2

ρ2(s)ds

s − m2

and take ρ2(s) to be the spectral density in D-dimensional
space-time (see e.g. (65) of [15]),

ρ2(s) =
(s − 4m2)λ−1/2

24λ+1πλ+1/2Γ (λ + 1/2)
√

s
,

√
s > 2m. (83)

Now consider a first order contribution of the expansion
in ε near the space-time dimension D = 2. The expansion

in λ = −ε results in

(s − 4m2)−ε−1/2

µ2ε
√

s

=
1√

s(s − 4m2)

(
1 − ε ln

(
s − 4m2

µ2

)
+ O(ε2)

)
, (84)

so the relevant first order term in ε is

∆ερ2(s) = − ln((s − 4m2)/m2)
2π
√

s(s − 4m2)
(85)

where µ = m has been chosen for convenience. Now we
change the variable according to

√
s = 2m cosh(ξ/2), t = e−ξ (86)

to obtain

∆ερ2(4m2 cosh2(ξ/2)) =
(ln t − 2 ln(1 − t))t

2πm2(1 − t2)
. (87)

For the quantity in question we find

∆εN =
∫ ∞

4m2

∆ερ2(s)ds

s − m2

=
1

2πm2

∫ 1

0

(ln t − 2 ln(1 − t))dt

1 + t + t2
. (88)

The roots of the denominator of the integrand in (88) are
now t3,4 = exp(±2πi/3) which again is a conjugate pair
of the sixth order roots of unity. After integrating this
equation we readily find

∆εN =
1

2πm2
√

3

(
Im
(
Li2
(
e2iπ/3

)
−Li2

(
e−2iπ/3

))
− π

3
ln 3
)

= − 1
πm2

√
3

(
Cl2

(
2π

3

)
− π

6
ln 3
)

. (89)

Using the relation

Cl2

(
2π

3

)
=

2
3
Cl2

(π

3

)

we finally obtain

∆εN =
2

3πm2
√

3

(
Cl2

(π

3

)
− π

4
ln 3
)

. (90)

Therefore, in the first order of the ε expansion of the spec-
tacle diagram we found this remarkable contribution pro-
portional to Cl2(π/3)2. In our calculation it emerges nat-
urally as the iteration of the lower order term. Originally
this contribution had been guessed and confirmed in [8]
by a direct numerical computation of the finite part of the
general three-loop bubble in four-dimensional space-time.

Note also that besides B4 and Cl2(π/3)2 there is one
more nontrivial transcendental number necessary for the
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analytical computation of the finite part of the general
three-loop bubble in four-dimensional space-time as has
been proven in [8]. This number was chosen in [8] as a two
dimensional nested sum of the form

V3,1 =
∑

m>n>0

(−1)m cos(2πn/3)
m3n

.

The analogous contribution may also appear in the first
order ε-expansion of the spectacle diagram. We hope to
devote a separate publication to this point.

Therefore there are solid arguments that all basic tran-
scendental numbers necessary for the analytical computa-
tion of three-loop massive bubbles can be found at the
level of much simpler topology than the general tetrahe-
dron. One may need only spectacle diagrams as the largest
set to find all necessary transcendental numbers. These
discoveries lead us to a conjecture about the extension of
recurrence relations for three-loop bubbles beyond those
found within the integration by part technique. Indeed, if
all results can be obtained within the spectacle topology
only, it looks plausible that there is a procedure that can
perform a reduction of the general tetrahedron diagram
to a simpler set where the spectacle topology is the most
complicated one. The manifest form of this procedure is
not known at present.

6 Conclusion

We have formulated a new representation for some of the
massive three-loop vacuum diagrams with the simple wa-
ter melon topology. We have obtained numerical values
for some master integrals within our representation. The
computation of diagrams with large powers of propaga-
tors is reduced to a linear (one-parameter) set of basis
integrals. Our representation is simple and provides a tool
for an efficient numerical evaluation of such diagrams. We
have given asymptotic estimates which provide an accu-
racy better than one per mille for all basis integrals with
q > 3 in the case of the leading order of ε-expansion and
with q > 5 in the case of the first order of ε-expansion.
The generalization to higher loops is straightforward. We
gave strong arguments that all nontrivial transcendental
numbers necessary for the computation of three-loop bub-
bles (which were identified in [8] by using a high precision
numerical integration) already appears at the level of spec-
tacle topology diagrams.

As a by-product of our analysis we obtained analytical
results for a number of definite integrals involving prod-
ucts of four McDonald functions of different orders with
powers and logarithms (Sect. 3).
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Appendix

We give some formulae for dealing with Gegenbauer poly-
nomials in Sect. 5.4 that can be found e.g. in [17,26,29].
The Gegenbauer polynomials obey the orthogonality rela-
tions ∫

Cλ
m(x̂1 · x̂2)Cλ

n(x̂2 · x̂3)dx̂2

=
λ

n + λ
δmnCλ

n(x̂1 · x̂3)
(∫

dx̂2 = 1
)

or, written in another form,

∫
Cλ

j1(â · b̂)Cλ
j2(b̂ · ĉ)dΩb = δj1j2

2πλ+1

Γ (λ + 1)
λ

j1 + λ
Cλ

j1(â · ĉ).

In particular, we have Cλ
0 (x) = 1, Cλ

1 (x) = 2λx and

(j + 1)Cλ
j+1(x) = 2(j + λ)xCλ

j (x) − (j + 2λ − 1)Cλ
j−1(x)

together with

Cλ
j (1) =

Γ (j + 2λ)
j!Γ (2λ)

.

The characteristic polynomial is given by

(t2 − 2tx + 1)−λ =
∞∑

j=0

tjCλ
j (x).
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